Two Characterizations of Optimality in Dynamic Programming
نویسندگان
چکیده
منابع مشابه
Two Characterizations of Optimality in Dynamic Programming
It holds in great generality that a plan is optimal for a dynamic programming problem, if and only if it is “thrifty” and “equalizing.” An alternative characterization of an optimal plan, that applies in many economic models, is that the plan must satisfy an appropriate Euler equation and a transversality condition. Here we explore the connections between these two characterizations.
متن کاملLocal-Optimality Characterizations in Decoding Tanner Codes
Recent developments in decoding Tanner codes with maximum-likelihood certificates are based on a sufficient condition called local-optimality. We define hierarchies of locally optimal codewords with respect to two parameters. One parameter is related to the distance of the local codes in Tanner codes. The second parameter is related to the finite number of iterations used in iterative decoding....
متن کاملsynthesis of platinum nanostructures in two phase system
چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...
Solving a Two-Period Cooperative Advertising Problem Using Dynamic Programming
Cooperative advertising is a cost-sharing mechanism in which a part of retailers' advertising investments are financed by the manufacturers. In recent years, investment among advertising options has become a difficult marketing issue. In this paper, the cooperative advertising problem with advertising options is investigated in a two-period horizon in which the market share in the second period...
متن کاملOn the Principle of Optimality for Nonstationary Deterministic Dynamic Programming∗
This note studies a general nonstationary infinite-horizon optimization problem in discrete time. We allow the state space in each period to be an arbitrary set, and the return function in each period to be unbounded. We do not require discounting, and do not require the constraint correspondence in each period to be nonempty-valued. The objective function is defined as the limit superior or in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Optimization
سال: 2009
ISSN: 0095-4616,1432-0606
DOI: 10.1007/s00245-009-9093-x